Quiver Signal Processing

Rayna Andreeva

University of Edinburgh

07/12/2020

Introduction

- Basics for a signal processing framework on quiver representations
- Can handle heterogeneous multidimensional information in networks.
- Provides a generalisation of graph neural networks (GNN)
- Useful when studying directed graphs

Introduction

- Graphs are limited for modeling systems whose agents not only pass messages in a heterogenous environment, but also process heterogenous data types
- Cellular sheaves are a data structure for stitching together assignments of data to both nodes and edges of a graph...
- They require "hidden" data assigned to edges, which could be inefficient or even unnatural as data must be pulled back from all edges incident to a node before it may be processed by a node

Introduction

- Quiver representation theory has a rich history in mathematics
- ▶ It has not been used much in engineering/computer science
- A quiver representation is an assignment of a vector space to each node and an assignment of a linear map associated to each arrow.
- A quiver representation provides a natural environment to handle heterogeneous information as vector spaces associated to nodes can be non-isomorphic i.e. have different dimensions

Quiver Representations

Definition 1 A quiver Q is a quadruple $Q = (Q_0, Q_1, h, t)$, consisting of sets Q_0 and Q_1 , and maps $h, t : Q_1 \to Q_0$.

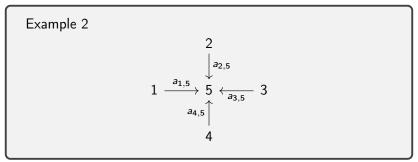
Some clarification: Q_0 are the nodes of Q and Q_1 are the arrows. For an arrow $a \in Q_1$, we say h(a) is the head of a and t(a) is the tail of a.

Quivers examples

Example 1

$$1 \xrightarrow{a_{1,2}} 2$$

Let $Q_0 = \{1, 2\}$, and $Q_1 = \{a_{1,2}\}$. The maps h and t are given by $h(a_{i,j}) = j$ and $t(a_{i,j}) = i$.



 $Q_0 = \{1, 2, 3, 4, 5\}$, and $Q_1 = \{a_{1,5}, a_{2,5}, a_{3,5}, a_{4,5}\}$. The maps h and t are given by $h(a_{i,j}) = j$ and $t(a_{i,j}) = i$.

Quivers alone do not offer anything new to the GSP literature. However, the notion of a representation of a quiver provides the needed formal components used to associate information to a quiver in different ways.

Definition 2 A (finite-dimensional) representation π of a quiver $Q = (Q_0, Q_1, h, t)$ is an assignment of (finite-dimensional) vector spaces to nodes: $\pi : i \in Q_0 \to V_i$, and an assignment of linear maps to arrows: $\pi :$ $a \in Q_1 \to (\phi_{t(a),h(a)} : V_{t(a)} \to V_{h(a)}).$

Example (robotics)

- Quiver representations offer a formal tool to analyze and understand heterogeneous large-scale distributed robotic systems
- We can define an arbitrary graph where each node is a robot in the system
- ▶ To each node in the graph, we associate a vector space that decomposes as $V_{sense} \oplus V_{task}$ to represent the type of information that each robot can sense V_{sense} , and the configuration space of the task to be performed by the robot V_{task} .
- Message-passing between robots is given by linear operators that synthesize both sensing and task-related observations
- This setup makes sense when dividing robots in several species (where each species (robot type) is defined by the traits (capabilities) that it owns).

Reference - "Formalizing the impact of diversity on performance in a heterogeneous swarm of robots," in 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016

When are two representations the same?

We start with a notion that will allow us to compare representations of a quiver.

Definition 3

Let π and ρ be representations of a quiver Q. An intertwining map $T : \pi \to \rho$ is a family of linear transformations $\{T_i : \pi(i) \to \rho(i) \mid i \in Q_0\}$ such that for every arrow $a \in Q_1$, the following diagram commutes:

$$\pi(t(a)) \xrightarrow{\pi(a)} \pi(h(a))$$

$$\downarrow \tau(t(a)) \qquad \qquad \downarrow \tau(h(a))$$

$$\rho(t(a)) \xrightarrow{\rho(a)} \rho(h(a)).$$

Example of isomorphic representations

Example: Consider the representations: $\mathbb{C}^{2} \underbrace{\stackrel{(a,b)}{\longrightarrow}}_{(c,d)} \mathbb{C} \qquad \mathbb{C} \underbrace{\stackrel{x}{\longrightarrow}}_{y} \mathbb{C}$ where $a, b, c, d, x, y \in \mathbb{C}$. If (a, b) = (2, 1), (c, d) = (6, 3), x = 1 and y = 3, construct a non-zero homomorphism f : $M \to N$.

Example of isomorphic representations, solution

$$M: \mathbb{C}^2 \underbrace{\stackrel{(a,b)}{\longrightarrow}}_{(c,d)} \mathbb{C} \qquad N: \mathbb{C} \underbrace{\stackrel{x}{\longrightarrow}}_{y} \mathbb{C}$$

where $a, b, c, d, x, y \in \mathbb{C}$. If $(a, b) = (2, 1)$, $(c, d) = (6, 3)$,
 $x = 1$ and $y = 3$.

Since we have 2 nodes, we should construct 2 linear maps $f : \mathbb{C}^2 \to \mathbb{C}$ and $g : \mathbb{C} \to \mathbb{C}$ in such a way that both diagrams commute (we have 2 diagrams because of the 2 arrows):

$$\begin{array}{ccc} \mathbb{C}^2 & \xrightarrow{(a,b)} & \mathbb{C} & \mathbb{C}^2 & \xrightarrow{(c,d)} & \mathbb{C} \\ & & \downarrow f & & \downarrow g & & \downarrow f & & \downarrow g \\ & \mathbb{C} & \xrightarrow{x} & \mathbb{C} & & \mathbb{C} & \xrightarrow{y} & \mathbb{C} \end{array}$$

Example of isomorphic representations, solution

We define
$$f$$
 and g by $f = (2, 1) : \mathbb{C}^2 \to \mathbb{C}$ and $g = 1 : \mathbb{C} \to \mathbb{C}$.
 \mathbb{C} . Then
 $x \circ f = g \circ (a, b), y \circ f = g \circ (c, d).$

Path in a quiver

Definition 4

A path γ in a quiver $Q = (Q_0, Q_1, h, t)$ of length $l \ge 1$ is a sequence $\gamma = a_l a_{l-1} \cdots a_1$ such that $a_i \in Q_1$ for all i and $t(a_{i+1}) = h(a_i)$ for $i = 1, \dots l-1$ with $h(\gamma) = h(a_l)$ and $t(\gamma) = t(a_1)$. By convention, there is a trivial path e_i of length zero which can be defined by $h(e_i) = t(e_i) = i$ for every $i \in Q_0$. Let Path(Q) denote the set of paths of a quiver Q.

Path and Path Algebra - but first, what is a field?

Definition 5

A field k is a set where sum and multiplication are defined.

- ▶ Define numbers and the operations we perform on them ⇒ Reals k = ℝ, complex numbers: k = ℂ
- We can define 2 operations, the sum and the product you can add and multiply any two real numbers or any two complex numbers

Path and Path Algebra

Definition 6

Let k be a field (most common examples are \mathbb{C} and \mathbb{R}). The path algebra of a quiver $Q = (Q_0, Q_1, h, t)$, denoted kQ, is the free vector space (meaning it has a basis) with basis Path(Q) and a product on basis elements,

$$\gamma_2.\gamma_1 = \begin{cases} \gamma_1\gamma_2 & t(\gamma_2) = h(\gamma_1) \\ 0 & t(\gamma_2) \neq h(\gamma_1) \end{cases}$$
(1)

This definition provides a multiplicative operation for the algebra, which is concatenation when it makes sense - the first path's head matches the tail of the second path.

Associative Algebra

Definition 7 An associative algebra A is a vector space with a bilinear map $A \times A \rightarrow A$ mapping $(a, b) \rightarrow a * b$ and such that (a * b) * c = a * (b * c)

Algebra adds one more operation to a vector space - the possibility to multiply two vectors and stay within the vector space.

Representation of an algebra

Definition 8

A representation of an algebra A is given by a pair (\mathcal{M}, ρ) , where \mathcal{M} is a vector space and ρ is a so-called homomorphism $\rho : A \to End(\mathcal{M})$, where $End(\mathcal{M})$ is the algebra of linear maps from a vector space \mathcal{M} to itself. Notice that ρ is a homomorphism if ρ is a linear map, ρ respects products $\rho(ab) = \rho(a)\rho(b)$, and $\rho(1) = I$.

Note: when $\mathcal{M} = \mathbb{R}^n$, think of $End(\mathcal{M})$ as all the linear transformations, or the $n \times n$ square matrices.

Bijections between quiver representations and path algebras

Theorem 9 There is a bijection

{Representations of Q} \leftrightarrow {Representations of kQ.} (2)

Explanation

One direction of the theorem implies that a given quiver representation π can be transformed into an equivalent representation of kQ, which consists of the data of a vector space \mathcal{M} and a homomorphism ρ . Indeed $\mathcal{M} = \bigoplus_i V_i$ where $V_i = \pi(i)$ and $i \in Q_0$. We also point out that because the path algebra kQ is generated by the elements in Path(Q), we can describe the action of ρ in terms of $\rho(p)$ for all $p \in Path(Q)$. In particular, the action of an element $p \in Path(Q)$ on an element $x \in \mathcal{M}$ is given by $y = \rho(p)x$ where

$$y(j) = \begin{cases} \pi(p)x(i) & \text{if } t(p) = i, \ h(p) = j \\ 0 & \text{otherwise}, \end{cases}$$
(3)

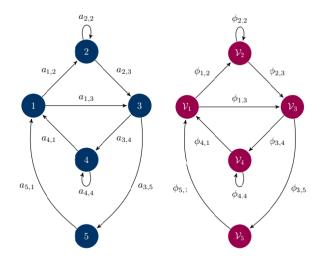
where $\pi(p)$ for the path $p = a_l a_{l-1} \cdots a_1$ is given naturally by the composition map $\pi(p) = \pi(a_l)\pi(a_{l-1}) \cdots \pi(a_1)$. Signal processing on quiver representations

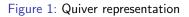
We now proceed to develop a theory of signal processing on quiver representations under the umbrella of algebraic signal processing.

Definition 10 Let $Q = (Q_0, Q_1, h, t)$ be a quiver and π a representation of Q. Then a signal x on π is an element $x \in \bigoplus_{i \in Q_0} \pi(i)$. Additionally, the elements in kQ are called algebraic filters while their images in $End(\mathcal{M})$ via the homomorphism ρ associated to the representation of kQ are called quiver filters.

Then the filtering of a signal x is given by $\rho(c)x$ where $c \in kQ$. Notice that this is the convolution between the signal x and $\rho(c)$.

Example





Example

Taking into account the quiver depicted in on the left and its representation on the right, we have an example of filtering considering the algebraic filter $c = a_{5,1}a_{3,5} + a_{1,2}a_{4,1}a_{3,4} + a_{1,3}a_{2,3}$. Then, when filtering a signal $x \in \bigoplus_{i \in Q_0} V_i$, we have

$$y = \rho(c)x = \rho(a_{5,1}a_{3,5} + a_{1,2}a_{4,1}a_{3,4} + a_{1,3}a_{2,3})x.$$
(4)

Using the linearity of the homomorphism ρ , we get:

$$y = \rho(a_{5,1}a_{3,5})x + \rho(a_{1,2}a_{4,1}a_{3,4})x + \rho(a_{1,3}a_{2,3})x.$$
 (5)

Then using equation (3) for the action of ρ on the elements of \mathcal{M} , we have $y(1) = \phi_{5,1}\phi_{3,5}x(3), y(2) = \phi_{1,2}\phi_{4,1}\phi_{3,4}x(3)$ and y(l) = 0 for l = 3, 4, 5.

Shift operator

Definition 11 Let $Q = (Q_0, Q_1, h, t)$ be a quiver and a representation of Q. Let ρ be the homomorphism induced by π in a representation of the path algebra kQ. Then, the operator $\rho(p)$ for any $p \in Path(Q)$ is called a shift operator.

Indecomposable representation

Definition 12

A nontrivial representation π of a quiver Q is decomposable if π is isomorphic to $(\pi_1 \oplus \pi_2)$ for some nontrivial representations π_1, π_2 of Q. A representation that is not decomposable is called indecomposable.

Basic decomposition

Definition 13

Let $Q = (Q_0, Q_1, h, t)$ be a quiver, and consider θ_i , the indecomposable representations of Q. Then, we say that pi has a basic decomposition if

$$\pi \cong r_1 \theta_1 \oplus r_2 \theta_2 \cdots \oplus r_k \theta_k, \tag{6}$$

where $r_i \theta_i$ represents the direct sum of r_i copies of θ_i .

Example for basic decomposition

Let us consider the quiver $Q : \circ \longrightarrow \circ$, which consists only of two nodes and one arrow, and consider the representation π of Q given by $\mathbb{C}^{r+s} \xrightarrow{\phi_{1,2}} \mathbb{C}^{r+t}$. The three indecomposable representations of Q are:

- ▶ (Rep 1) $\mathbb{C} \xrightarrow{1} \mathbb{C}$
- ► (Rep 2) $0 \xrightarrow{0} \mathbb{C}$
- ► (Rep 3) $\mathbb{C} \xrightarrow{0} 0$

We can see that π can expressed as a direct sum of r copies of (Rep1), s copies of (Rep3) and t copies of (Rep2).

Conclusion

- We have laid the groundwork for a signal processing framework on quiver representations
- We introduced the notions of signals, filters and basic decompositions
- ▶ We went over a few basic examples of quiver representations
- An application area of robotics was suggested

Conclusion and thoughts?

- This signal processing framework provides a new tool for handling heterogenous data distributed across networks
- It can be used for new neural convolutional architectures what are the next steps for Quiver Neural Networks (QNN)?
- Does it have an advantage over GNNs?
- What are other application areas?
- High level of abstraction (but great for generalisation) do theories like this one have a place in ML?
- Would this be computationally feasible?

Thank you!

Thank you for your attention!