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Introduction

I Basics for a signal processing framework on quiver
representations

I Can handle heterogeneous multidimensional information in
networks.

I Provides a generalisation of graph neural networks (GNN)
I Useful when studying directed graphs



Introduction

I Graphs are limited for modeling systems whose agents not only
pass messages in a heterogenous environment, but also process
heterogenous data types

I Cellular sheaves are a data structure for stitching together
assignments of data to both nodes and edges of a graph...

I They require “hidden” data assigned to edges, which could be
inefficient or even unnatural as data must be pulled back from
all edges incident to a node before it may be processed by a
node



Introduction

I Quiver representation theory has a rich history in mathematics
I It has not been used much in engineering/computer science
I A quiver representation is an assignment of a vector space to

each node and an assignment of a linear map associated to
each arrow.

I A quiver representation provides a natural environment to
handle heterogeneous information as vector spaces associated
to nodes can be non-isomorphic i.e. have different dimensions



Quiver Representations

Definition 1
A quiver Q is a quadruple Q = (Q0,Q1, h, t), consisting of
sets Q0 and Q1, and maps h, t : Q1 → Q0.

Some clarification: Q0 are the nodes of Q and Q1 are the arrows.
For an arrow a ∈ Q1, we say h(a) is the head of a and t(a) is the
tail of a.



Quivers examples

Example 1

1 2
a1,2

Let Q0 = {1, 2}, and Q1 = {a1,2}. The maps h and t are given by
h(ai ,j) = j and t(ai ,j) = i .

Example 2
2

1 5 3

4

a2,5

a1,5

a3,5

a4,5

Q0 = {1, 2, 3, 4, 5}, and Q1 = {a1,5, a2,5, a3,5, a4,5}. The maps h
and t are given by h(ai ,j) = j and t(ai ,j) = i .



Quivers alone do not offer anything new to the GSP literature.
However, the notion of a representation of a quiver provides the
needed formal components used to associate information to a
quiver in different ways.

Definition 2
A (finite-dimensional) representation π of a quiver
Q = (Q0,Q1, h, t) is an assignment of (finite-dimensional)
vector spaces to nodes: π : i ∈ Q0 → Vi , and an assignment
of linear maps to arrows: π :
a ∈ Q1 → (φt(a),h(a) : Vt(a) → Vh(a)).



Example (robotics)
I Quiver representations offer a formal tool to analyze and

understand heterogeneous large-scale distributed robotic
systems

I We can define an arbitrary graph where each node is a robot
in the system

I To each node in the graph, we associate a vector space that
decomposes as Vsense ⊕ Vtask to represent the type of
information that each robot can sense Vsense , and the
configuration space of the task to be performed by the robot
Vtask .

I Message-passing between robots is given by linear operators
that synthesize both sensing and task-related observations

I This setup makes sense when dividing robots in several species
(where each species (robot type) is defined by the traits
(capabilities) that it owns).

Reference - “Formalizing the impact of diversity on performance in
a heterogeneous swarm of robots,” in 2016 IEEE International
Conference on Robotics and Automation (ICRA), 2016



When are two representations the same?

We start with a notion that will allow us to compare
representations of a quiver.

Definition 3
Let π and ρ be representations of a quiver Q. An
intertwining map T : π → ρ is a family of linear
transformations {Ti : π(i)→ ρ(i) | i ∈ Q0} such that for
every arrow a ∈ Q1, the following diagram commutes:

π(t(a)) π(h(a))

ρ(t(a)) ρ(h(a)).

π(a)

T (t(a)) T (h(a))

ρ(a)



Example of isomorphic representations

Example: Consider the representations:

C2 C
(a,b)

(c,d)

C C
x

y

where a, b, c , d , x , y ∈ C. If (a, b) = (2, 1), (c, d) = (6, 3),
x = 1 and y = 3, construct a non-zero homomorphism f :
M → N.



Example of isomorphic representations, solution

M: C2 C
(a,b)

(c,d)

N: C C
x

y

where a, b, c, d , x , y ∈ C. If (a, b) = (2, 1), (c , d) = (6, 3),
x = 1 and y = 3.

Since we have 2 nodes, we should construct 2 linear maps
f : C2 → C and g : C→ C in such a way that both diagrams
commute (we have 2 diagrams because of the 2 arrows):

C2 C

C C

(a,b)

f g

x

C2 C

C C

(c,d)

f g

y



Example of isomorphic representations, solution

We define f and g by f = (2, 1) : C2 → C and g = 1 : C→
C. Then

x ◦ f = g ◦ (a, b), y ◦ f = g ◦ (c , d).



Path in a quiver

Definition 4
A path γ in a quiver Q = (Q0,Q1, h, t) of length l ≥ 1 is a
sequence γ = alal−1 · · · a1 such that ai ∈ Q1 for all i and
t(ai+1) = h(ai ) for i = 1, · · · l − 1 with h(γ) = h(al) and
t(γ) = t(a1). By convention, there is a trivial path ei of
length zero which can be defined by h(ei ) = t(ei ) = i for
every i ∈ Q0. Let Path(Q) denote the set of paths of a
quiver Q.



Path and Path Algebra - but first, what is a field?

Definition 5
A field k is a set where sum and multiplication are defined.

I Define numbers and the operations we perform on them =⇒
Reals k = R, complex numbers: k = C

I We can define 2 operations, the sum and the product - you
can add and multiply any two real numbers or any two
complex numbers



Path and Path Algebra

Definition 6
Let k be a field (most common examples are C and R). The
path algebra of a quiver Q = (Q0,Q1, h, t), denoted kQ, is
the free vector space (meaning it has a basis) with basis
Path(Q) and a product on basis elements,

γ2.γ1 =

{
γ1γ2 t(γ2) = h(γ1)

0 t(γ2) 6= h(γ1)
(1)

This definition provides a multiplicative operation for the algebra,
which is concatenation when it makes sense - the first path’s head
matches the tail of the second path.



Associative Algebra

Definition 7
An associative algebra A is a vector space with a bilinear
map A× A→ A mapping (a, b)→ a ∗ b and such that
(a ∗ b) ∗ c = a ∗ (b ∗ c)

Algebra adds one more operation to a vector space - the possibility
to multiply two vectors and stay within the vector space.



Representation of an algebra

Definition 8
A representation of an algebra A is given by a pair (M, ρ),
whereM is a vector space and ρ is a so-called
homomorphism ρ : A→ End(M), where End(M) is the
algebra of linear maps from a vector spaceM to itself.
Notice that ρ is a homomorphism if ρ is a linear map, ρ
respects products ρ(ab) = ρ(a)ρ(b), and ρ(1) = I .

Note: whenM = Rn, think of End(M) as all the linear
transformations, or the n × n square matrices.



Bijections between quiver representations and path algebras

Theorem 9
There is a bijection

{Representations of Q} ↔ {Representations of kQ.} (2)



Explanation

One direction of the theorem implies that a given quiver rep-
resentation π can be transformed into an equivalent represen-
tation of kQ, which consists of the data of a vector spaceM
and a homomorphism ρ. IndeedM = ⊕iVi where Vi = π(i)
and i ∈ Q0. We also point out that because the path algebra
kQ is generated by the elements in Path(Q), we can describe
the action of ρ in terms of ρ(p) for all p ∈ Path(Q). In par-
ticular, the action of an element p ∈ Path(Q) on an element
x ∈M is given by y = ρ(p)x where

y(j) =

{
π(p)x(i) if t(p) = i, h(p) = j
0 otherwise,

(3)

where π(p) for the path p = alal−1 · · · a1 is given naturally
by the composition map π(p) = π(al)π(al−1). · · ·π(a1).



Signal processing on quiver representations

We now proceed to develop a theory of signal processing on quiver
representations under the umbrella of algebraic signal processing.

Definition 10
Let Q = (Q0,Q1, h, t) be a quiver and π a representation of
Q. Then a signal x on π is an element x ∈ ⊕i∈Q0π(i).
Additionally, the elements in kQ are called algebraic filters
while their images in End(M) via the homomorphism ρ
associated to the representation of kQ are called quiver
filters.

Then the filtering of a signal x is given by ρ(c)x where c ∈ kQ.
Notice that this is the convolution between the signal x and ρ(c).



Example

Figure 1: Quiver representation

Taking into account the quiver depicted in on the left and its
representation on the right, we have an example of filtering
considering the algebraic filter c = a5,1a3,5 + a1,2a4,1a3,4 +
a1,3a2,3.



Example

Taking into account the quiver depicted in on the left and its
representation on the right, we have an example of filtering
considering the algebraic filter c = a5,1a3,5 + a1,2a4,1a3,4 +
a1,3a2,3. Then, when filtering a signal x ∈ ⊕i∈Q0Vi , we have

y = ρ(c)x = ρ(a5,1a3,5 + a1,2a4,1a3,4 + a1,3a2,3)x . (4)

Using the linearity of the homomorphism ρ, we get:

y = ρ(a5,1a3,5)x + ρ(a1,2a4,1a3,4)x + ρ(a1,3a2,3)x . (5)

Then using equation (3) for the action of ρ on the elements
ofM, we have y(1) = φ5,1φ3,5x(3), y(2) = φ1,2φ4,1φ3,4x(3)
and y(l) = 0 for l = 3, 4, 5.



Shift operator

Definition 11
Let Q = (Q0,Q1, h, t) be a quiver and a representation of
Q. Let ρ be the homomorphism induced by π in a
representation of the path algebra kQ. Then, the operator
ρ(p) for any p ∈ Path(Q) is called a shift operator.



Indecomposable representation

Definition 12
A nontrivial representation π of a quiver Q is decomposable
if π is isomorphic to (π1 ⊕ π2) for some nontrivial
representations π1, π2 of Q. A representation that is not
decomposable is called indecomposable.



Basic decomposition

Definition 13
Let Q = (Q0,Q1, h, t) be a quiver, and consider θi , the
indecomposable representations of Q. Then, we say that pi
has a basic decomposition if

π ∼= r1θ1 ⊕ r2θ2 · · · ⊕ rkθk , (6)

where riθi represents the direct sum of ri copies of θi .



Example for basic decomposition

Let us consider the quiver Q : ◦ −→ ◦, which consists only
of two nodes and one arrow, and consider the representation

π of Q given by Cr+s φ1,2−−→ Cr+t . The three indecomposable
representations of Q are:

I (Rep 1) C 1−→C
I (Rep 2) 0 0−→C
I (Rep 3) C 0−→0

We can see that π can expressed as a direct sum of r copies
of (Rep1), s copies of (Rep3) and t copies of (Rep2).



Conclusion

I We have laid the groundwork for a signal processing framework
on quiver representations

I We introduced the notions of signals, filters and basic
decompositions

I We went over a few basic examples of quiver representations
I An application area of robotics was suggested



Conclusion and thoughts?

I This signal processing framework provides a new tool for
handling heterogenous data distributed across networks

I It can be used for new neural convolutional architectures -
what are the next steps for Quiver Neural Networks (QNN)?

I Does it have an advantage over GNNs?
I What are other application areas?
I High level of abstraction (but great for generalisation) - do

theories like this one have a place in ML?
I Would this be computationally feasible?



Thank you!

Thank you for your attention!
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